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Abstract
Weconsider approximation algorithms for packing integer programs (PIPs) of the form
max{〈c, x〉 : Ax ≤ b, x ∈ {0, 1}n} where A, b and c are nonnegative. We let W =
mini, j bi/Ai, j denote the width of Awhich is at least 1. Previous work by Bansal et al.
(Theory Comput 8(24):533–565, 2012) obtained an Ω( 1

Δ
1/�W�
0

)-approximation ratio

where Δ0 is the maximum number of nonzeroes in any column of A (in other words
the �0-column sparsity of A). They raised the question of obtaining approximation
ratios based on the �1-column sparsity of A (denoted by Δ1) which can be much
smaller than Δ0. Motivated by recent work on covering integer programs (Chekuri
and Quanrud, in: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp 1596–1615. SIAM, 2019; Chen et al., in: Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1984–
2003. SIAM, 2016) we show that simple algorithms based on randomized rounding
followed by alteration, similar to those of Bansal et al. (Theory Comput 8(24):533–
565, 2012) (but with a twist), yield approximation ratios for PIPs based on Δ1. First,
following an integrality gap example from (Theory Comput 8(24):533–565, 2012),
we observe that the case ofW = 1 is as hard as maximum independent set even when
Δ1 ≤ 2. In sharp contrast to this negative result, as soon as width is strictly larger
than one, we obtain positive results via the natural LP relaxation. For PIPs with width
W = 1 + ε where ε ∈ (0, 1], we obtain an Ω(ε2/Δ1)-approximation. In the large
width regime, when W ≥ 2, we obtain an Ω(( 1

1+Δ1/W
)1/(W−1))-approximation. We

also obtain a (1 − ε)-approximation when W = Ω(
log(Δ1/ε)

ε2
). Viewing the rounding
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algorithms as contention resolution schemes, we obtain approximation algorithms in
the more general setting when the objective is a non-negative submodular function.

Keywords Approximation algorithms · Sparse packing integer programs ·
Randomized rounding · Submodular optimization

Mathematics Subject Classification Primary 68W25 · Secondary 90C59

1 Introduction

Packing integer programs (abbr. PIPs) are an expressive class of integer programs of
the form:

maximize 〈c, x〉 over x ∈ {0, 1}n s.t. Ax ≤ b,

where A ∈ R
m×n
≥0 , b ∈ R

m≥0 and c ∈ R
n≥0 all have nonnegative entries1. Many

important problems in discrete and combinatorial optimization can be cast as special
cases of PIPs. These include themaximum independent set in graphs and hypergraphs,
set packing, matchings and b-matchings, knapsack (when m = 1), and the multi-
dimensional knapsack. The maximum independent set problem (MIS), a special case
of PIPs, is N P-hard and unless P = N P there is no n1−ε-approximation where n is
the number of nodes in the graph [14,23]. For this reason it is meaningful to consider
special cases and other parameters that control the difficulty of PIPs. Motivated by
the fact that MIS admits a simple 1

Δ(G)
-approximation where Δ(G) is the maximum

degree of G, previous work considered approximating PIPs based on the maximum
number of nonzeroes in any column of A (denoted by Δ0); note that when MIS
is written as a PIP, Δ0 coincides with Δ(G). As another example, when maximum
weight matching is written as a PIP, Δ0 = 2. Bansal et al. [1] obtained a simple and
clever algorithm that achieved an Ω(1/Δ0)-approximation for PIPs via the natural
LP relaxation; this improved previous work of Pritchard [17,18] who was the first to
obtain an approximation for PIPs only as a function of Δ0. Moreover, the rounding
algorithm in [1] can be viewed as a contention resolution scheme which allows one
to get similar approximation ratios even when the objective is submodular [1,8]. It is
well-understood that PIPs become easier when the entries in A are small compared
to the packing constraints b. To make this quantitative we consider the well-studied
notion called the width defined as W := mini, j :Ai, j>0 bi/Ai, j . Bansal et al. obtain an

Ω(( 1
Δ0

)1/�W�)-approximation which improves as W becomes larger. Although they
do not state it explicitly, their approach also yields a (1 − ε)-approximation when
W = Ω( 1

ε2
log(Δ0/ε)).

Δ0 is a natural measure for combinatorial applications such as MIS and matchings
where the underlying matrix A has entries from {0, 1}. However, in some applica-
tions of PIPs such as knapsack and its multi-dimensional generalization which are

1 We can allow the variables to have general integer upper bounds instead of restricting them to be boolean.
As observed in [1], one can reduce this more general case to the {0, 1} case without too much loss in the
approximation.
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more common in resource-allocation problems, the entries of A are arbitrary rational
numbers (which can be assumed to be from the interval [0, 1] after scaling). In such
applications it is natural to consider another measure of column-sparsity based on the
�1 norm. Specifically we consider Δ1, the maximum column sum of A. Unlike Δ0,
Δ1 is not scale invariant so one needs to be careful in understanding the parameter and
its relationship to the widthW . For this purpose we normalize the constraints Ax ≤ b
as follows. Let W = mini, j :Ai, j>0 bi/Ai, j denote the width as before (we can assume
without loss of generality thatW ≥ 1 since we are interested in integer solutions). We
can then scale each row Ai of A separately such that, after scaling, the i’th constraint
reads as Ai x ≤ W . After scaling all rows in this fashion, entries of A are in the interval
[0, 1], and the maximum entry of A is equal to 1. Note that this scaling process does
not alter the original width.We letΔ1 denote the maximum column sum of A after this
normalization and observe that 1 ≤ Δ1 ≤ Δ0. In many settings of interest Δ1 	 Δ0.
We also observe that Δ1 is a more robust measure than Δ0; small perturbations of the
entries of A can dramatically change Δ0 while Δ1 changes minimally.

Bansal et al. raised the question of obtaining an approximation ratio for PIPs as
a function of only Δ1. They observed that this is not feasible via the natural LP
relaxation by describing a simple example where the integrality gap of the LP is Ω(n)

while Δ1 is a constant. Their example essentially shows the existence of a simple
approximation preserving reduction fromMIS to PIPs such that the resulting instances
haveΔ1 ≤ 2; thus no approximation ratio that depends only onΔ1 is feasible for PIPs
unless P = N P . These negative results seem to suggest that pursuing bounds based
on Δ1 is futile, at least in the worst case. However, the starting point of this paper
is the observation that both the integrality gap example and the hardness result are
based on instances where the width W of the instance is arbitrarily close to 1. We
demonstrate that these examples are rather brittle and obtain several positive results
when we consider W ≥ 1 + ε for any fixed ε > 0.

1.1 Our results

Our first result is on the hardness of approximation for PIPs that we already referred to.
The hardness result suggests that one should consider instances with W > 1. Recall
that after normalization we haveΔ1 ≥ 1 andW ≥ 1 and the maximum entry of A is 1.
We consider three regimes ofW and obtain the following results, all via the natural LP
relaxation, which also establish corresponding upper bounds on the integrality gap.

(i) 1 < W ≤ 2. ForW = 1+εwhere ε ∈ (0, 1]weobtain anΩ( ε2

Δ1
)-approximation.

(ii) W ≥ 2.Weobtain anΩ(( 1
1+ Δ1

W

)1/(W−1))-approximationwhich can be simplified

to Ω(( 1
1+Δ1

)1/(W−1)) since W ≥ 1.

(iii) A (1 − ε)-approximation when W = Ω( 1
ε2

log(Δ1/ε)).

Our results establish approximation bounds based on Δ1 that are essentially the same
as those based on Δ0 as long as the width is not too close to 1. When the matrix A is
a {0, 1}-matrix, Δ1 = Δ0, and previous integrality gap results based on Δ0 [1] show
that the bounds we obtain are essentially tight modulo constant factors. We describe
randomized algorithms which can be derandomized via standard techniques.
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All our algorithms are based on a simple randomized rounding plus alteration
framework that has been successful for both packing and covering problems. Our
scheme is similar to that of Bansal et al. at a high level but we make a simple but
important change in the algorithm and its analysis. This is inspired by recent work on
covering integer programs [5] where �1-sparsity based approximation bounds from
[9] were simplified.

The rounding algorithms can be viewed as contention resolution schemes, and via
known techniques [1,8], we also obtain approximation algorithms for submodular
objectives. We present the results for this generalization in Sect. 6.

1.2 Other related work

We note that PIPs are equivalent to the multi-dimensional knapsack problem. When
m = 1 we have the classical knapsack problem, which admits a very efficient FPTAS
(see [3]). There is a PTAS for any fixed m [12] but unless P = N P an FPTAS does
not exist for m = 2. Approximation algorithms for PIPs in their general form were
considered initially by Raghavan and Thompson [19] and refined substantially by
Srinivasan [20]. Srinivasan obtained approximation ratios of the formΩ(1/n1/(W+1))

when A had entries from {0, 1}, and a ratio of the formΩ(1/n1/W )when A had entries
from [0, 1]. Pritchard [17] was the first to obtain a bound for PIPs based solely on the
column sparsity parameter Δ0. He used iterated rounding and his initial bound was
improved in [18] to Ω(1/Δ2

0). The current state of the art is due to Bansal et al. [1].
Previously we ignored constant factors when describing the ratio. In fact [1] obtains
a ratio of 1

eΔ0+o(Δ0)
by strengthening the basic LP relaxation.

In terms of hardness of approximation, PIPs generalize MIS and hence one cannot
obtain a ratio better than n1−ε unless P = N P [14,23]. Building on MIS, [4] shows
that PIPs are hard to approximate within a nΩ(1/W ) factor for any constant width
W . Hardness of MIS in bounded degree graphs [21] and hardness for k-set-packing
[15] imply that PIPs are hard to approximate to within Ω(1/Δ1−ε

0 ) and to within
Ω((logΔ0)/Δ0) when Δ0 is a sufficiently large constant. These hardness results are
based on {0, 1} matrices for which Δ0 and Δ1 coincide.

There is a large literature on deterministic and randomized rounding algorithms
for packing and covering integer programs and connections to several topics and
applications including discrepancy theory. �1-sparsity guarantees for covering integer
programs (CIPs) were first obtained by Chen, Harris and Srinivasan [9] partly inspired
by [13].

Recent (and extensive) work on submodular function maximization has demon-
strated that several approximation algorithms for modular objectives can be general-
ized to non-negative submodular objectives. Of particular relevance is the approach
via themultilinear relaxation followed by rounding via contention resolution schemes.
We refer the reader to [8] for the framework. This allows us to extend our results to
submodular objectives.
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2 Hardness of approximating PIPs as a function of 11

Bansal et al. [1] showed that the integrality gap of the natural LP relaxation for PIPs
is Ω(n) even when Δ1 is a constant. One can use essentially the same construction to
show the following theorem.

Theorem 1 There is an approximation preserving reduction from MIS to instances of
PIPs with Δ1 ≤ 2.

Proof Let G = (V , E) be an undirected graph without self-loops and let n = |V |.
Let A ∈ [0, 1]n×n be indexed by V . For all v ∈ V , let Av,v = 1. For all uv ∈ E , let
Au,v = Av,u = 1/n. For all the remaining entries in A that have not yet been defined,
set these entries to 0. Consider the following PIP:

maximize 〈x, 1〉 over x ∈ {0, 1}n s.t. Ax ≤ 1. (1)

Let S be the set of all feasible integral solutions of (1) andI be the set of independent
sets of G. Define g : S → I where g(x) = {v : xv = 1}. To show g is surjective,
consider a set I ∈ I. Let y be the characteristic vector of I . That is, yv is 1 if v ∈ I
and 0 otherwise. Consider the row in A corresponding to an arbitrary vertex u where
yu = 1. For all v ∈ V such that v is a neighbor to u, yv = 0 as I is an independent set.
Thus, as the nonzero entries in A of the row corresponding to u are, by construction,
the neighbors of u, it follows that the constraint corresponding to u is satisfied in (1).
As u is an arbitrary vertex, it follows that y is a feasible integral solution to (1) and as
I = {v : yv = 1}, g(y) = I .

Define h : S → N0 such that h(x) = |g(x)|. It is clear that maxx∈S h(x) is equal
to the optimal value of (1). Let Imax be a maximum independent set of G. As g is
surjective, there exists z ∈ S such that g(z) = Imax . Thus, maxx∈S h(x) ≥ |Imax |. As
maxx∈S h(x) is equal to the optimum value of (1), it follows that a β-approximation
for PIPs implies a β-approximation for maximum independent set.

Furthermore, we note that for this PIP, Δ1 ≤ 2, thus concluding the proof. ��
Unless P = N P , MIS does not admit a n1−ε-approximation for any fixed ε > 0

[14,23]. Hence the preceding theorem implies that unless P = N P one cannot obtain
an approximation ratio for PIPs solely as a function of Δ1.

3 Round and alter framework

The algorithms in this paper have the same high-level structure. The algorithms first
scale down the fractional solution x by some factor α, and then randomly round
each coordinate independently. The rounded solution x ′ may not be feasible for the
constraints. The algorithm alters x ′ to a feasible x ′′ by considering each constraint
separately in an arbitrary order; if x ′ is not feasible for constraint i , some subset S of
variables are chosen to be set to 0. Each constraint corresponds to a knapsack problem
and the framework (which is adapted from [1]) views the problem as the intersection
of several knapsack constraints. A formal template is given in Fig. 1. To make the
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Round-and-Alter Framework: input A, b, and α

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability αxj and 0 otherwise
x′′ ← x′
for i ∈ [m] do

find S ⊆ [n] such that setting x′
j = 0 for all j ∈ S would satisfy 〈ei, Ax′〉 ≤ bi

for all j ∈ S, set x′′
j = 0

end for
return x′′

Fig. 1 Randomized rounding with alteration framework

framework into a formal algorithm, one must define α and how to choose S in the for
loop. These parts will depend on the regime of interest.

For an algorithm that follows the round-and-alter framework, the expected output
of the algorithm is E

[〈c, x ′′〉] = ∑n
j=1 c j · Pr[x ′′

j = 1]. Independent of how α is
defined or how S is chosen, Pr[x ′′

j = 1] = Pr[x ′′
j = 1|x ′

j = 1] · Pr[x ′
j = 1] since

x ′′
j ≤ x ′

j . Then we have

E[〈c, x ′′〉] = α

n∑

j=1

c j x j · Pr[x ′′
j = 1|x ′

j = 1].

Let Ei j be the event that x ′′
j is set to 0 when ensuring constraint i is satisfied in the for

loop. As x ′′
j is only set to 0 if at least one constraint sets x ′′

j to 0, we have

Pr[x ′′
j = 0|x ′

j = 1] = Pr

⎡

⎣
⋃

i∈[m]
Ei j |x ′

j = 1

⎤

⎦ ≤
m∑

i=1

Pr[Ei j |x ′
j = 1].

Combining these two observations, we have the following lemma, which applies
to all of our subsequent algorithms.

Lemma 1 LetA be a randomized rounding algorithm that follows the round-and-alter
framework given in Fig. 1. Let x ′ be the rounded solution obtained with scaling factor
α. Let Ei j be the event that x ′′

j is set to 0 by constraint i . If for all j ∈ [n] we have
∑m

i=1 Pr[Ei j |x ′
j = 1] ≤ γ, then A is an α(1 − γ )-approximation for PIPs.

We will refer to the quantity Pr[Ei j |x ′
j = 1] as the rejection probability of item

j in constraint i . We will also say that constraint i rejects item j if x ′′
j is set to 0 in

constraint i .

3.1 Concentration inequalities and other useful inequalities

In the subsequent sections, for particular regimes of interest, we rely on Chernoff
bounds to upper bound rejection probabilities. The following standard Chernoff bound
is used to obtain a more convenient bound in Lemma 3. The proof of Lemma 3 follows
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directly from choosing δ such that (1 + δ)μ = W − β and applying Lemma 2. We
include the proof for convenience.

Lemma 2 ([16])Let X1, . . . , Xn be independent random variables where Xi is defined
on {0, βi }, where 0 < βi ≤ β ≤ 1 for some β. Let X = ∑

i Xi and denote E[X ] as
μ. Then for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
(

eδ

(1 + δ)1+δ

)μ/β

Lemma 3 Let X1, . . . , Xn ∈ [0, β] be independent random variables for some 0 <

β ≤ 1. Suppose μ = E[∑i Xi ] ≤ αW for some 0 < α < 1 and W ≥ 1 where
(1 − α)W > β. Then

Pr

[
∑

i

Xi > W − β

]

≤
(

αe1−αW

W − β

)(W−β)/β

.

Proof Since the right-hand side is increasing in α, it suffices to assume μ = αW .
Choose δ such that (1+ δ)μ = W −β. Then δ = (W −β −μ)/μ. Because μ = αW
and since (1−α)W > β, we have δ = ((1−α)W −β)/μ > 0. We apply the standard
Chernoff bound in Lemma 3 to obtain

Pr

[
∑

i

Xi > W − β

]

= Pr

[
∑

i

Xi > (1 + δ)μ

]

≤
(

eδ

(1 + δ)1+δ

)μ/β

.

Because 1 + δ = (W − β)/μ and δ = (W − β − μ)/μ,

(
eδ

(1 + δ)1+δ

)μ/β

=
(

eW−β−μ

((W − β)/μ)W−β

)1/β

.

Exponentiating the denominator,

(
eW−β−μ

((W − β)/μ)W−β

)1/β

= exp

(
1

β

(
W − β − μ + (W − β) ln

(
μ

W − β

)))

As μ = αW ,

exp

(
1

β

(
W − β − μ + (W − β) ln

(
μ

W − β

)))

= exp

(
1

β

(
(1 − α)W − β + (W − β) ln

(
αW

W − β

)))
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We can rewrite the exponent to show that

exp

(
1

β

(
(1 − α)W − β − (W − β) ln

(
W − β

αW

)))
≤

(
αe1−αW

W − β

)(W−β)/β

.

��
The following three lemmas are used in the proofs bounding the rejection proba-

bilities for different regimes of width. The inequalities are easily verified via calculus.
The proofs are included for the sake of completeness.

Lemma 4 Let x ∈ (0, 1]. Then (1/e1/e)1/x ≤ x.

Proof Taking logs of both sides of the stated inequality and rearranging, it suffices to
show that ln(1/e1/e) ≤ x ln x for x > 0. x ln x is convex and its minimum is −1/e at
x = 1/e. Since ln(1/e1/e) = −1/e, the inequality holds. ��
Lemma 5 Let y ≥ 2 and x ∈ (0, 1] . Then x/y ≥ (1/e2/e)y/2x .

Proof We start with a simple rewriting of the statement. After taking logs and rear-
ranging, it is sufficient to show

(x/y) ln(x/y) ≥ (1/2) ln(1/e2/e) = −1/e.

Replacing x/y with z, we see that it suffices the prove z ln z ≥ −1/e for 0 < z ≤ 1/2.
Wenote that x ln x is convex and itsminimum is−1/e at x = 1/e. Thus, z ln z ≥ −1/e.
This concludes the proof. ��
Lemma 6 Let 0 < ε ≤ 1 and x ∈ (0, 1]. Then εx/2 ≥ (ε/e2/e)1/x .

Proof Let d = e2/e/2 and observe that d > 1. We first do a change of variables,
replacing ε/2with ε and x with x/ε. Ifwe take a log of both sides, thenour reformulated
goal is to show that

x ln x ≥ ε ln(ε/d)

for 0 < ε ≤ 1/2 and x ∈ (0, ε]. Letting f (y) = y ln y and g(y) = y ln(y/d), we
want to show that f (x) ≥ g(ε). We will proceed by cases.

First, suppose 0 < ε ≤ d/e. It is easy to show that f is decreasing on (0, 1/e]
and increasing on [1/e,∞) and that g is decreasing on (0, d/e] and increasing on
[d/e,∞). As f is decreasing on (0, 1/e], for 0 < ε ≤ 1/e, we have f (x) ≥ f (ε)
as x ≤ ε. As d > 1, it follows that f (ε) ≥ g(ε). Therefore, f (x) ≥ g(ε) for
0 < ε ≤ 1/e. Furthermore, as g is decreasing on [1/e, d/e] and f is increasing on
[1/e, d/e], we have f (x) ≥ g(ε) for 0 < ε ≤ d/e.

For the second case, suppose d/e < ε ≤ 1/2. Note that the minimum of f on the
interval (0, 1/2] is f (1/e) = −1/e. Thus, it would suffice to show that g(ε) ≤ −1/e.
As we noted previously that g is increasing on [d/e, 1/2], it would suffice to show that
g(1/2) ≤ −1/e. By definition of g, we see g(1/2) = −1/e. Therefore, f (x) ≥ g(ε).
This concludes the proof. ��
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round-and-alter-by-sorting(A, b, α1):
let x be an optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α1xj and 0 otherwise
x′′ ← x′
for i ∈ [m] do

sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max{� ∈ [n] :
∑�

j=1 Ai,jx′
j ≤ bi}

for each j ∈ [n] such that j > s, set x′′
j = 0

end for
return x′′

Fig. 2 Round-and-alter in the large width regime. Each constraint sorts the coordinates in increasing size
and greedily picks a feasible set and discards the rest

4 The large width regime:W ≥ 2

In this section, we consider PIPs with width W ≥ 2. Recall that we assume A ∈
[0, 1]m×n and bi = W for all i ∈ [m]. Therefore we have Ai, j ≤ W/2 for all i, j and
from a knapsack point of view all items are “small”. We apply the round-and-alter
framework in a simple fashion where in each constraint i the coordinates are sorted by
the coefficents in that row and the algorithm chooses the largest prefix of coordinates
that fit in the capacity W and the rest are discarded. We emphasize that this sorting
step is crucial for the analysis and differs from the scheme in [1]. Figure 2 describes
the formal algorithm.

The key property for the analysis. The analysis relies on obtaining a bound on the
rejection probability of coordinate j by constraint i . Let X j be the indicator variable
for j being chosen in the first step. We show that Pr[Ei j | X j = 1] ≤ cAi j for some
c that depends on the scaling factor α. Thus coordinates with smaller coefficients are
less likely to be rejected. The total rejection probability of j ,

∑m
i=1 Pr[Ei j | X j = 1],

is proportional to the column sum of coordinate j which is at most Δ1.

4.1 AnÄ(1/11)-approximation algorithm

We show that round-and-alter-by-sorting yields an Ω(1/Δ1)-approximation if we
set the scaling factor α1 = 1

c1Δ1
where c1 = 4e1+1/e.

The rejection probability is captured by the following main lemma.

Lemma 7 Let α1 = 1
c1Δ1

for c1 = 4e1+1/e. Let i ∈ [m] and j ∈ [n]. Then we have

Pr[Ei j |X j = 1] ≤ Ai, j
2Δ1

in the algorithm round-and-alter-by-sorting(A, b, α1).

Proof At iteration i of round-and-alter-by-sorting, after the set {Ai,1, . . . , Ai,n} is
sorted, the indices are renumbered so that Ai,1 ≤ · · · ≤ Ai,n . Note that j may now be
a different index j ′, but for simplicity of notation we will refer to j ′ as j . Let ξ� = 1
if x ′

� = 1 and 0 otherwise. Let Yi j = ∑ j−1
�=1 Ai,�ξ�.

If Ei j occurs, then Yi j > W − Ai, j , since x ′′
j would not have been set to zero by

constraint i otherwise. That is,

Pr[Ei j |X j = 1] ≤ Pr[Yi j > W − Ai, j |X j = 1].
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The event Yi j > W − Ai, j does not depend on x ′
j . Therefore,

Pr[Yi j > W − Ai, j |X j = 1] ≤ Pr[Yi j ≥ W − Ai, j ].

To upper bound E[Yi j ], we have

E[Yi j ] =
j−1∑

�=1

Ai,� · Pr[X� = 1] ≤ α1

n∑

�=1

Ai,�x� ≤ α1W .

As Ai, j ≤ 1, W ≥ 2, and α1 < 1/2, we have (1−α1)W
Ai, j

> 1. Using the fact that Ai, j

is at least as large as all entries Ai, j ′ for j ′ < j , we satisfy the conditions to apply the
Chernoff bound in Lemma 3. This implies

Pr[Yi j > W − Ai, j ] ≤
(

α1e1−α1W

W − Ai, j

)(W−Ai, j )/Ai, j

.

Note that W
W−Ai, j

≤ 2 asW ≥ 2. Because e1−α1 ≤ e and by the choice of α1, we have

(
α1e1−α1W

W − Ai, j

)(W−Ai, j )/Ai, j

≤ (2eα1)
(W−Ai, j )/Ai, j =

(
1

2e1/eΔ1

)(W−Ai, j )/Ai, j

.

Then we prove the final inequality in two parts. First, we see that W ≥ 2 and
Ai, j ≤ 1 imply that

W−Ai, j
Ai, j

≥ 1. This implies

(
1

2Δ1

)(W−1)/Ai, j

≤ 1

2Δ1
.

Second, we see that

(1/e1/e)(W−Ai, j )/Ai, j ≤ (1/e1/e)1/Ai, j ≤ Ai, j

for Ai, j ≤ 1, where the first inequality holds because W − Ai, j ≥ 1 and the second
inequality holds by Lemma 4. This concludes the proof. ��
Theorem 2 When setting α1 = 1

c1Δ1
where c1 = 4e1+1/e, round-and-alter-by-sorting

(A, b, α1) is a randomized (α1/2)-approximation algorithm for PIPs with width W ≥
2.

Proof Fix j ∈ [n]. By Lemma 7 and the definition of Δ1, we have

m∑

i=1

Pr[Ei j |X j = 1] ≤
m∑

i=1

Ai, j

2Δ1
≤ 1

2
.

123



�1-Sparsity approximation bounds for packing integer…

By Lemma 1, which shows that upper bounding the sum of the rejection probabil-
ities by γ for every item leads to an α1(1 − γ )-approximation, we get the desired
result. ��

4.2 AnÄ( 1
(1+11/W)1/(W−1) )-approximation

We improve the bound from the previous section by setting α1 = 1
c2(1+Δ1/W )1/(W−1)

where c2 = 4e1+2/e. Note that the scaling factor becomes larger as W increases.

Lemma 8 Let α1 = 1
c2(1+Δ1/W )1/(W−1) for c2 = 4e1+2/e. Let i ∈ [m] and j ∈ [n].

Then in the algorithm round-and-alter-by-sorting(A, b, α1), we have Pr[Ei j |X j =
1] ≤ Ai, j

2Δ1
.

Proof The proof proceeds similarly to the proof of Lemma 7. Since α1 < 1/2, every-
thing up to and including the application of the Chernoff bound there applies. This
gives that for each i ∈ [m] and j ∈ [n],

Pr[Ei j |X j = 1] ≤ (2eα1)
(W−Ai, j )/Ai, j =

(
1

2e2/e(1 + Δ1/W )1/(W−1)

)(W−Ai, j )/Ai, j

,

where the equality is by choice of α1. We prove the final inequality in two parts. First,
note that

W−Ai, j
Ai, j

≥ W − 1 since Ai, j ≤ 1. Thus,

(
1

2(1 + Δ1/W )1/(W−1)

)(W−Ai, j )/Ai, j

≤ 1

2W−1(1 + Δ1/W )
≤ W

2Δ1
.

Second, we see that

(
1

e2/e

)(W−Ai, j )/Ai, j

≤
(

1

e2/e

)W/(2Ai, j )

≤ Ai, j

W

for Ai, j ≤ 1, where the first inequality holds becauseW ≥ 2 and the second inequality
holds by Lemma 5. ��

If we replace Lemma 7 with Lemma 8 in the proof of Theorem 2, we obtain the
following stronger guarantee.

Theorem 3 When setting α1 = 1
c2(1+Δ1/W )1/(W−1) where c2 = 4e1+2/e, for PIPs

with width W ≥ 2, round-and-alter-by-sorting(A, b, α1) is a randomized (α1/2)-
approximation.

4.3 A (1 − O(�))-approximation whenW ≥ Ä( 1
�2 ln(11

� ))

In this section, we give a randomized (1 − O(ε))-approximation for the case when
W ≥ Ω( 1

ε2
ln(Δ1

ε
)). We use the algorithm round-and-alter-by-sorting in Fig. 2 with
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the scaling factor α1 = 1− ε. The analysis follows the same structure as the analyses
for the lemmas bounding the rejection probabilities from the previous sections.

Lemma 9 Let 0 < ε < 1
e ,α1 = 1−ε, andW = 2

ε2
ln(Δ1

ε
)+1. Let i ∈ [m] and j ∈ [n].

Then in round-and-alter-by-sorting(A, b, α1), we have Pr[Ei j |X j = 1] ≤ e · εAi, j
Δ1

.

Proof Renumber indices so that Ai,1 ≤ · · · ≤ Ai,n and if the index of j changes to
j ′, we still refer to j ′ as j . Let Yi j = ∑ j−1

�=1 Ai,�ξ� where ξ� = 1 if x ′
� = 1 and 0

otherwise. We first note that

Pr[Ei j |X j = 1] ≤ Pr[Yi j > W − Ai, j ].

By the choice of α1 and the fact that Ai, j ≤ 1 and W = 2
ε2

ln(Δ1
ε

) + 1, we have

((1 − α1)W )/Ai, j ≥ εW = 2
ε
ln(Δ1

ε
) + ε. A direct argument via calculus shows

2
ε
ln(Δ1

ε
) + ε > 1 for ε ∈ (0, 1

e ). Thus, (1 − α1)W > Ai, j .
By the LP constraints, E[Yi j ] ≤ α1W . Then as Ai, j ′ ≤ Ai, j for all j ′ < j , we can

apply the Chernoff bound in Lemma 3 to obtain

Pr[Yi j ≥ W − Ai, j ] ≤
(

α1e1−α1W

W − Ai, j

)(W−Ai, j )/Ai, j

.

We bound the right-hand side in two steps. First, as Ai, j ≤ 1,

(
W

W − Ai, j

)(W−Ai, j )/Ai, j

≤
(

W

W − 1

)W−1

≤ e,

where the last inequality follows from the fact that (1 − 1/z)z−1 ≥ 1/e for all z ≥ 1.
Second, by the choice of α1,

(
α1e

1−α1
)(W−Ai, j )/Ai, j = (

(1 − ε)eε
)(W−Ai, j )/Ai, j .

For 0 < ε < 1
e , we have 1−ε ≤ exp(−ε − ε2

2 ). AsW = 2
ε2

ln(Δ1
ε

)+1 and Ai, j ≤ 1,

(
(1 − ε)eε

)(W−Ai, j )/Ai, j ≤
(
e−ε2/2

) 2
ε2

ln( Δ1
ε

) ≤ exp

(

− ln(Δ1
ε

)

Ai, j

)

.

Observe that 1
Ai, j

− ln( e
Ai, j

) ≥ 0. For Ai, j ∈ [0, 1], a direct argument shows ln(t)
Ai, j

−
ln( t

Ai, j
) is increasing in t for t ≥ e. As Δ1/ε > e, we have

ln( Δ1
ε

)

Ai, j
≥ ln( Δ1

εAi, j
).

Therefore,

exp

(

− ln(Δ1
ε

)

Ai, j

)

≤ exp

(
− ln

(
Δ1

εAi, j

))
= εAi, j

Δ1
.
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This concludes the proof. ��
Lemma 9 implies that we can upper bound the sum of the rejection probabilities

for any item j by eε, leading to the following theorem.

Theorem 4 Let 0 < ε < 1
e and W = 2

ε2
ln(Δ1

ε
)+1. When setting α1 = 1− ε and c =

e+ 1, round-and-alter-by-sorting(A, b, α1) is a randomized (1− cε)-approximation
algorithm.

Proof Fix j ∈ [n]. By Lemma 9 and the definition of Δ1,

m∑

i=1

Pr[Ei j |X j = 1] ≤
m∑

i=1

eεAi, j

Δ1
≤ eε.

By Lemma 1, which shows that an upper bound on the rejection probabilities
of γ leads to an α1(1 − γ )-approximation, we have an α1(1 − eε)-approximation.
Then note that α1(1 − eε) = (1 − ε)(1 − eε) ≥ 1 − (e + 1)ε. This concludes the
proof. ��

5 The small width regime:W = 1 + �

We now consider the regime when the width is small. Let W = 1 + ε for some
ε ∈ (0, 1]. We cannot apply the simple sorting based scheme that we used for the
large width regime. We borrow the idea from [1] in splitting the coordinates into
big and small in each constraint; now the definition is more refined and depends on
ε. Moreover, the small coordinates and the big coordinates have their own reserved
capacity in the constraint. This is crucial for the analysis. We provide more formal
details below.

We set α2 to be ε2

c3Δ1
where c3 = 8e1+2/e. The alteration step differentiates between

“small” and “big” coordinates as follows. For each i ∈ [m], let Si = { j : Ai, j ≤
ε/2} and Bi = { j : Ai, j > ε/2}. We say that an index j is small for constraint
i if j ∈ Si . Otherwise we say it is big for constraint i when j ∈ Bi . For each
constraint, the algorithm is allowed to pack a total of 1 + ε into that constraint. The
algorithm separately packs small indices and big indices. In an ε amount of space,
small indices that were chosen in the rounding step are sorted in increasing order of
size and greedily packed until the constraint is no longer satisfied. The big indices
are packed by arbitrarily choosing one and packing it into the remaining space of 1.
The rest of the indices are removed to ensure feasibility. Figure 3 gives pseudocode
for the randomized algorithm round-alter-small-width which yields an Ω(ε2/Δ1)-
approximation.

It remains to bound the rejection probabilities. Recall that for j ∈ [n], we define
X j to be the indicator random variable 1(x ′

j = 1) and Ei j is the event that j was
rejected by constraint i .

We first consider the case when index j is big for constraint i . Note that it is possible
that there may not exist any big indices for a given constraint. The same holds true for
small indices.
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round-alter-small-width(A, b, ε, α2):
let x be an optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α2xj and 0 otherwise
x′′ ← x′
for i ∈ [m] do

if |Si| = 0 then
s ← 0

else
sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max
{

� ∈ Si :
∑�

j=1 Ai,jx′
j ≤ ε

}

end if
if |Bi| = 0, then t = 0, otherwise let t be an arbitrary element of Bi

for each j ∈ [n] such that j > s and j �= t, set x′′
j = 0

end for
return x′′

Fig. 3 By setting the scaling factor α2 = ε2

cΔ1
for a sufficiently large constant c, round-alter-small-width

is a randomized Ω(ε2/Δ1)-approximation for PIPs with width W = 1 + ε for some ε ∈ (0, 1] (see
Theorem 5)

Lemma 10 Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and j ∈ Bi .

Then in round-alter-small-width(A, b, ε, α2), we have Pr[Ei j |X j = 1] ≤ Ai, j
2Δ1

.

Proof Let E be the event that there exists j ′ ∈ Bi such that j ′ �= j and X j ′ = 1.
Observe that if Ei j occurs and X j = 1, then it must be the case that at least one other
element of Bi was chosen in the rounding step. Thus,

Pr[Ei j |X j = 1] ≤ Pr[E] ≤
∑

�∈Bi
� �= j

Pr[X� = 1] ≤ α2

∑

�∈Bi
x�,

where the second inequality follows by the union bound.Observe that for all � ∈ Bi , we
have Ai,� > ε/2.By theLP constraints,we have 1+ε ≥ ∑

�∈Bi Ai,�x� > ε
2 ·∑�∈Bi x�.

Thus,
∑

�∈Bi x� ≤ 1+ε
ε/2 = 2/ε + 2.

Using this upper bound for
∑

�∈Bi x�, we have

α2

∑

�∈Bi
x� ≤ ε2

c3Δ1

(
2

ε
+ 2

)
≤ 4ε

c3Δ1
≤ Ai, j

2Δ1
,

where the second inequality utilizes the fact that ε ≤ 1 and the third inequality holds
because c3 ≥ 16 and Ai, j > ε/2. ��

Next we consider the case when index j is small for constraint i . The analysis here
is similar to that in the preceding section with width at least 2.

Lemma 11 Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and j ∈ Si .

Then in round-alter-small-width(A, b, ε, α2), we have Pr[Ei j |X j = 1] ≤ Ai, j
2Δ1

.
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Proof Renumbering as in the proof of Lemma7 and definingYi j = ∑ j−1
�=1 Ai,� ·1[x ′

� =
1] in the same manner, we have

Pr[Ei j |X j = 1] ≤ Pr[Yi j ≥ ε − Ai, j ].

Let A′
i,� = 2

ε
· Ai,� for � ∈ [ j]. As Ai,� ≤ ε/2 for all � ∈ [ j], we have A′

i,� ∈ [0, 1].
Let Y ′

i j = ∑ j−1
�=1 A′

i,�ξ�. Then

Pr[Yi j ≥ ε − Ai, j ] = Pr[Y ′
i j ≥ 2 − A′

i, j ].

To upper bound E[Y ′
i j ], we use the LP constraints and the value of α2 to see that

E[Y ′
i j ] ≤ 2ε(1+ε)

c3Δ1
. Let α′

2 = 2ε
c3Δ1

and W = 2. Then E[Y ′
i j ] ≤ α′

2W . With these
parameter choices, we see that (1 − α′

2)W > A′
i, j . Therefore, as A′

i,� ≤ A′
i, j for all

� < j , we can apply the Chernoff bound in Lemma 3 to obtain

Pr[Y ′
i j ≥ 2 − A′

i, j ] ≤
(

α′
2e

1−α′
2W

W − A′
i, j

)(W−A′
i, j )/A

′
i, j

.

Observe that e1−α′
2 ≤ e and W

W−A′
i, j

≤ 2 since W = 2 and A′
i, j ≤ 1. By our choice of

α′
2,

(
α′
2e

1−α′
2W

W − A′
i, j

)(W−A′
i, j )/A

′
i, j

≤ (
2eα′

2

)(W−A′
i, j )/A

′
i, j =

(
ε

2e2/eΔ1

)(W−A′
i, j )/A

′
i, j

Then note that
W−A′

i, j

A′
i, j

≥ 1
A′
i, j

≥ 1 since W = 2 and A′
i, j ≤ 1. So

(
ε

2e2/eΔ1

)(W−A′
i, j )/A

′
i, j =

(
1

2Δ1

)(W−A′
i, j )/A

′
i, j ·

(
ε

e2/e

)(W−A′
i, j )/A

′
i, j ≤ 1

2Δ1
·
εA′

i, j

2
,

where the inequality follows by Lemma 6. We have shown Pr[Ei j |X j = 1] ≤ εA′
i, j

4Δ1
.

Since A′
i, j = Ai, j · 2

ε
, the result follows. ��

As Lemma 11 shows that the rejection probability is small, we can prove the fol-
lowing approximation guarantee much like in Theorems 2 and 3.

Theorem 5 Let ε ∈ (0, 1]. When setting α2 = ε2

c3Δ1
for c3 = 8e1+2/e, for PIPs

with width W = 1+ ε, round-alter-small-width(A, b, ε, α2) is a randomized (α2/2)-
approximation algorithm.

Proof Fix j ∈ [n]. Then by Lemmas 10 and 11 and the definition of Δ1, we have

m∑

i=1

Pr[Ei j |X j = 1] ≤
m∑

i=1

Ai, j

2Δ1
≤ 1

2
.
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Recall that Lemma 1 gives an α2(1 − γ )-approximation where γ is an upper bound
on the sum of the rejection probabilities for any item. This concludes the proof. ��
An upper bound on the integrality gap We showed in Theorem 5 that the integrality
gap is Ω(ε2/Δ1). The example that we used in the proof of Theorem 1 can be easily
adapted to show that the gap is O(ε) when Δ1 = O(1). It is an interesting open
problem to resolve the integrality gap as a function of ε.

6 Approximating with a submodular objective

We show that the results from the previous sections can be generalized to the case
where the objective function is a nonnegative submodular set function. Recall that a
real-valued set function f : 2N → R over a finite ground set N is submodular iff
f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for all A, B ⊆ N . Here we are interested
in non-negative submodular functions f : 2N → R+. Also of interest are monotone
submodular functions which satisfy the additional property that f (A) ≤ f (B) for all
A ⊂ B.

The formal problem we are interested in is the following. Let N = {1, 2, . . . , n} be
the ground set and let f : 2N → R+ be a nonnegative submodular set function. We
assume that one has oracle access to f ; given any set S ⊆ N , we can obtain f (S) in
constant time. Our goal is to approximate the following problem:

maximize f (S) over S ⊆ N s.t.
∑

j∈S
Ai, j ≤ bi , ∀i ∈ [m]. (2)

Equivalently, if we let 1S ∈ {0, 1}n denote the characteristic vector of a set S ⊆ N
then we wish to approximate the problem: max f (S) s.t. A1S ≤ b.

The rounding algorithms from the previous sections fall under the framework of
contention resolution schemes (CR schemes) that allow one to extend the results to
submodular objectives via the multilinear relaxation approach. We briefly outline this
framework and follow [8].

Multilinear relaxation and CR scheme based rounding. Let N be a finite ground set
and f : 2N → R+ be a non-negative submodular set function. Let I ⊆ 2N be a
downward closed family of sets2 which abstractly models some constraints. We are
then interested in the optimization problem maxS∈I f (S). The multilinear relaxation
approach for approximating this problem is to solve a continuous optimization problem
maxx∈PI F(x) and then round it. Here PI ⊇ conv{1S : S ∈ I} is a convex set that
serves as a relaxation for the constraint set, and F is a continuous extension of f to
[0, 1]n . Specifically, F : [0, 1]n → R+ is the multilinear extension of f and is defined
as

F(x) =
∑

S⊆N

f (S)
∏

i∈S
xi

∏

j /∈S
(1 − x j ).

2 We say a family of subsets I ⊆ 2N is downward closed if for all A ⊆ B ⊆ N , if B ∈ I, then A ∈ I.
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We say that PI is solvable if one can efficiently optimize linear functions over it. For
a scalar α ∈ (0, 1] we use αPI to denote the set {αx | x ∈ PI}. Let OPT denote
the value of the relaxation maxx∈PI F(x) which provides an upper bound on the
optimum integral solution. Finding OPT is N P-Hard even for the simple cardinality
constraint, however, randomized constant factor approximations are known whenever
PI is solvable and f is a nonnegative submodular function. In particular for any
α ∈ (0, 1] one can obtain a point x ∈ αPI such that F(x) ≥ (1− 1/eα)OPT when f
is monotone [22] and such that F(x) ≥ αe−αOPT when f is non-negative [11] 3.

The second step in devising an algorithm is to round the fractional solution. We
focus on a particular strategy based on CR schemes. It is motivated by the definition
of F(x) as the expected value E[ f (R(x))], where R(x) is a random set obtained
by independently picking each i ∈ N with probability xi . Thus randomly rounding
x preserves the objective F(x) in expectation. However the resulting set R(x) can
violate the constraints. Thus we would like to alter R(x) to a feasible set R′ while not
losing too much in the objective. We would also like to scale x down by an α factor
for some α ∈ (0, 1] and work with R(αx) since this can be useful in the alteration
step as we have seen for PIPs.

In [8] a formal and abstract definition of alteration schemes called CR schemes
was provided, and it was shown that these schemes can be used in conjunction with
the multilinear relaxation. In this setting an alteration scheme for PI is viewed as a
(potentially randomized) algorithm A that takes as input x ∈ PI and a set B ⊆ N
satisfying B ⊆ support(x)4 and outputs a feasible set A(B, x) ∈ I.
Definition 1 Let α, β ∈ (0, 1]. We say that an algorithm A is a (randomized) (α, β)-
balanced CR scheme for PI ifA returns a (random) setA(B, x) for all inputs x ∈ αPI
and B ⊆ N and satsifies the following properties:

1. for all B ⊆ N , with probability 1, A(B, x) ⊆ B ∩ support(x) and A(B, x) ∈ I.
2. for all i ∈ support(x), Pr[i ∈ A(R(x), x) | i ∈ R(x)] ≥ β.
3. for all B1 ⊆ B2 ⊆ N and i ∈ B1, Pr[i ∈ A(B1, x)] ≥ Pr[i ∈ A(B2, x)].
The first property guarantees that the output ofA is a feasible set. The second property
gives a lower bound on the probability of an element being in the output conditioned
on it being chosen in the first randomized rounding step. The last property requires
that the alteration scheme is monotone from each element’s perspective.

The following is a paraphrased version of the results in [8] that combines the
algorithms for solving the multilinear relaxation followed by rounding with a CR
scheme.

Theorem 6 ([8]) Consider the problem maxS∈I f (S) for a non-negative submodular
function f : 2N → R+ and its multilinear relaxation maxx∈PI F(x). Combining an
(αe−α)-approximation tomaxx∈αPI F(x)andan (α, β)-balancedCRscheme, one can
obtain a randomized (αe−αβ)-approximation to maxS∈I f (S). The approximation
ratio improves to (1 − 1

eα )β when f is additionally monotone.

3 For non-negative functions there have been subsequent improvements in the approximation ratio [2,10]
but the dependence on α is unclear and since the precise approximation ratios are not the focus in this paper,
we confine ourselves to the simpler algorithm and bound from [11].
4 For x ∈ [0, 1]n we use support(x) to denote the set {i | xi > 0}.
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Applying to packing constraints. We now apply the preceding theorem to the setting
of packing constraints formalized earlier as (2). We have I = {S ⊆ N | A1S ≤ b}
and we use the natural LP relaxation PI = {x ∈ [0, 1]n | Ax ≤ b}. Clearly PI is
solvable via linear programming.

We now interpret the rounding algorithms in the preceding sections as CR schemes.
In terms of the language used in the previous sections, α is the scaling factor used in
obtaining the rounded solution and 1−β is the upper bound on the rejection probability
of every item. We note that the alteration schemes are deterministic.

Let round-and-alter-by-sorting-sub(A, b, α1, x, B) be the same algorithm as
round-and-alter-by-sorting but now round-and-alter-by-sorting-sub is given a frac-
tional solution x to maxx∈α1PI F(x) and B will be the rounded solution R(α1x).
We make the same changes to round-alter-small-width to obtain the algorithm
round-alter-small-width-sub(A, b, ε, α2, x, B).

Lemma 12 1. For W ≥ 2, round-and-alter-by-sorting-sub(A, b, α1, x, B) is an(
α1,

1
2

)
-balanced CR scheme where α1 = 1

c2(1+Δ1/W )1/(W−1) and c2 = 4e1+2/e.

2. For W = 1 + ε, round-alter-small-width-sub(A, b, ε, α2, x, B) is an
(
α2,

1
2

)
-

balanced CR scheme where α2 = ε2

c3Δ1
and c3 = 8e1+2/e.

Proof We only prove (1) as the proof for (2) is similar. round-alter-small-width-sub
takes an integral solution and guarantees feasibility by satisfying each constraint indi-
vidually by setting variables to 0 if necessary, so (1) of Definition 1 is satisfied. Let
Ei j be the event that item j is rejected by constraint i . By Lemma 8, the rejection

probability of item j is at most
∑m

i=1 Pr[Ei j |x ′
j = 1] ≤ ∑m

i=1
Ai, j
2Δ1

≤ 1
2 . In the nota-

tion of Definition 1, this implies (2) of Definition 1 is satisfied with β = 1/2. (3) of
Definition 1 is also satisfied as the probability that an item is rejected only decreases
if less items are chosen in the rounding step.

Combining Lemma 12 and Theorem 6, we immediately get the following result.

Theorem 7 Let I = {S ⊆ N | A1S ≤ b} and let f : 2N → R+ be a nonnegative
submodular set function.

1. Assume W ≥ 2. Let α1 = 1
c2(1+Δ1/W )1/(W−1) where c2 = 4e1+2/e. There exists an

((α1e−α1) 12 )-approximation tomaxS∈I f (S). Assuming f is also monotone, there
exists a ((1 − 1

eα1 ) 12 )-approximation.

2. Let ε ∈ (0, 1] and assume W = 1 + ε. Let α2 = ε2

c3Δ1
where c3 = 8e1+2/e.

There exists an ((α2e−α2) 12 )-approximation to maxS∈I f (S). Assuming f is also
monotone, there exists a ((1 − 1

eα2 ) 12 )-approximation.

We close this section with two remarks. First, CR schemes for different classes of
constraints can be composed gracefully [8] and hence the ones here could be useful in
conjunction with schemes for other constraints. Second, certain dependent rounding
schemes formatroid andmatroid intersection constraints satisfy concentration bounds,
similar to Chernoff bounds, for non-negative sums; since our analysis for PIPs relied
essentially only onChernoff bounds, one can extend the analysis even under dependent
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rounding. This allows for some applications when one combines packing constraints
with matroid or matroid intersection type constraints. We refer the reader to [6,7] for
more details.
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